เค•ोเคˆ เคชเคฐिเคฃाเคฎ เคจเคนीं เคฎिเคฒा

    ๐Ÿ“š 60-Day Python ML & Data Science Syllabus Plan

    60 Days Python for Machine Learning & Data Science Roadmap

    ๐Ÿ“š 60-Day Python ML & Data Science Syllabus Plan

    Phase 1: Python & Data Basics (Day 1–10)

    ๐Ÿ‘‰ Goal: Python fundamentals + data handling

    • Day 1: Python Basics – Variables, Data Types, Operators
    • Day 2: Control Structures – if-else, loops, functions
    • Day 3: Lists, Tuples, Sets, Dictionaries (examples)
    • Day 4: File handling + Error handling
    • Day 5: NumPy basics (arrays, vector operations)
    • Day 6: NumPy advanced (matrix ops, broadcasting)
    • Day 7: Pandas Series & DataFrame basics
    • Day 8: Pandas Data Cleaning (missing data, duplicates)
    • Day 9: Pandas GroupBy, Merge, Join, Concat
    • Day 10: Matplotlib + Seaborn (visualization basics)

    Phase 2: Statistics & Preprocessing (Day 11–20)

    ๐Ÿ‘‰ Goal: Data understanding + feature processing

    • Day 11: Statistics basics (mean, median, mode, std, variance)
    • Day 12: Probability basics (distribution, sampling)
    • Day 13: Data visualization advanced (pairplot, heatmap)
    • Day 14: Handling Missing Values (drop, fill, impute)
    • Day 15: Feature Scaling (Standardization, Normalization, Robust)
    • Day 16: Encoding Categorical Variables (Label, OneHot)
    • Day 17: Outlier detection (Z-score, IQR method)
    • Day 18: Train/Test Split + Validation sets
    • Day 19: Pipeline & ColumnTransformer intro
    • Day 20: Practice Day — Mini Project (Titanic data preprocessing)

    Phase 3: Supervised Learning (Day 21–35)

    ๐Ÿ‘‰ Goal: Regression + Classification

    • Day 21: Intro to ML + Types (Supervised, Unsupervised)
    • Day 22: Linear Regression (theory + code)
    • Day 23: Multiple Linear Regression + Polynomial Regression
    • Day 24: Logistic Regression + Classification basics
    • Day 25: KNN Algorithm (theory + implementation)
    • Day 26: Decision Trees (regression + classification)
    • Day 27: Random Forests + Feature Importance
    • Day 28: Support Vector Machines (linear, RBF)
    • Day 29: Naive Bayes Classifier (GaussianNB, MultinomialNB)
    • Day 30: Practice Day — Compare 5 classifiers on Titanic dataset
    • Day 31: Model Evaluation Metrics (accuracy, precision, recall, f1)
    • Day 32: ROC Curve, AUC, Confusion Matrix
    • Day 33: Cross-validation (k-fold, stratified)
    • Day 34: Hyperparameter Tuning (GridSearchCV, RandomSearchCV)
    • Day 35: Practice Day — Hyperparameter tuning on RandomForest

    Phase 4: Unsupervised Learning & Feature Engineering (Day 36–45)

    ๐Ÿ‘‰ Goal: Clustering + Dimensionality Reduction

    • Day 36: KMeans Clustering (theory + elbow method)
    • Day 37: Hierarchical Clustering (dendrograms, agglomerative)
    • Day 38: DBSCAN Clustering
    • Day 39: PCA (Principal Component Analysis)
    • Day 40: t-SNE, LDA intro
    • Day 41: Feature Engineering (create new features)
    • Day 42: Feature Selection methods (filter, wrapper, embedded)
    • Day 43: Dimensionality Reduction practice (PCA on MNIST)
    • Day 44: Clustering practice (customer segmentation)
    • Day 45: Practice Day — Feature Engineering on Sales dataset

    Phase 5: Advanced ML + Deployment (Day 46–55)

    ๐Ÿ‘‰ Goal: Ensemble, Boosting, Deployment

    • Day 46: Ensemble Learning basics
    • Day 47: Bagging & Random Forests recap
    • Day 48: Boosting (AdaBoost, Gradient Boosting)
    • Day 49: XGBoost & LightGBM
    • Day 50: Stacking Classifiers
    • Day 51: Model Deployment intro (Flask, FastAPI)
    • Day 52: Streamlit apps for ML
    • Day 53: MLOps Basics (ML lifecycle, pipelines)
    • Day 54: CI/CD in ML workflows
    • Day 55: Practice Day — Deploy ML model on Streamlit

    Phase 6: Advanced Topics + Project (Day 56–60)

    ๐Ÿ‘‰ Goal: Interpretability, Fairness, End-to-End Project

    • Day 56: Model Interpretability (SHAP, LIME)
    • Day 57: Bias & Fairness in ML models
    • Day 58: Recommender Systems basics (Content, Collaborative)
    • Day 59: Time Series Forecasting intro (ARIMA, Prophet)
    • Day 60: End-to-End Capstone Project (Data → Model → Deployment)

    เคเค• เคŸिเคช्เคชเคฃी เคญेเคœें

    เค”เคฐ เคจเคฏा เคชुเคฐाเคจे

    ู†ู…ูˆุฐุฌ ุงู„ุงุชุตุงู„